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Abstract We report the results of a numerical study of nonequilibrium steady states for a
class of Hamiltonian models. In these models of coupled matter-energy transport, particles
exchange energy through collisions with pinned-down rotating disks. In Commun. Math.
Phys. 262, 237–267, 2006, Eckmann and Young studied 1D chains and showed that certain
simple formulas give excellent approximations of energy and particle density profiles. Keep-
ing the basic mode of interaction in Commun. Math. Phys. 262, 237–267, 2006, we extend
their prediction scheme to a number of new settings: 2D systems on different lattices, driven
by a variety of boundary (heat bath) conditions including the use of thermostats. Particle-
conserving models of the same type are shown to behave similarly. The second half of this
paper examines memory and finite-size effects, which appear to impact only minimally the
profiles of the models tested in Commun. Math. Phys. 262, 237–267, 2006. We demonstrate
that these effects can be significant or insignificant depending on the local geometry. Dy-
namical mechanisms are proposed, and in the case of directional bias in particle trajectories
due to memory, correction schemes are derived and shown to give accurate predictions.
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Introduction

Explaining far-from-equilibrium macroscopic phenomena on the basis of microscopic dy-
namical mechanisms is one of the basic problems of nonequilibrium statistical mechan-
ics. This paper presents the results of some numerical studies aimed at shedding light on
“micro-to-macro” questions for a class of mechanical models introduced in [16, 27, 35] as
paradigms for transport processes. Here as in [16], the basic idea is that macroscopic quanti-
ties such as energy and density profiles can be deduced—easily and fairly accurately—from
certain information on local dynamics provided one makes a couple of simplifying assump-
tions. In this paper, we extend the results in [16] to a larger class of models and at the same
time examine more closely the extent to which these assumptions hold. These questions lead
to a systematic study of how geometry impacts memory and finite-size effects.

The models studied in this paper describe a coupled transport of matter and energy. The
local dynamics are purely deterministic and energy-conserving; that is what we mean by
“Hamiltonian” in this paper. The system is attached to (unequal) stochastic heat baths which
both inject particles into the system and absorb those that leave. Placed throughout the sys-
tem, evenly spaced, are rotating disks that are nailed down at their centers; particles ex-
change energy with them upon collisions. This interaction was first used in [35] and [27];
it takes the place of direct particle-particle interactions, which are more delicate to control.
The authors of [16] introduced the following conceptual simplification: each rotating disk
is enclosed in a well-defined area called a cell, with small enough passageways between
cells to ensure equilibration within each cell. Motivated by this “decoupling” of internal
cell dynamics and cell-to-cell traffic, they proposed a scheme that yields simple explicit ex-
pressions for approximate energy profiles and particle densities. The scheme is based on
two assumptions: that cell-to-cell movement takes essentially the form of an unbiased ran-
dom walk, and that within each cell, the system attains local thermal equilibrium quickly.
They found striking agreement between their proposed formulas and simulation results, with
barely visible errors for chains consisting of no more than 30 cells.

The aims of this paper are twofold. One is a straightforward extension of the results in
[16] to a larger class of models. Keeping the basic interaction as well as cell structure in
the last paragraph, we have found the prediction scheme in [16]—suitably modified—to be
very flexible. To give a sense of the type of generalizations, our simulations are in 2D, but
we expect similar results to hold in 3D (with rotating balls in the place of rotating disks). In
dimensions greater than one, there are different choices of lattices and boundary conditions.
We show that this scheme is equally valid for rectangular and hexagonal lattices, and for
all of the boundary conditions tested. The resulting profiles are, of course, different in each
case. We permit even point sources and the use of thermostats to regulate temperature in
different parts of the domain. These and other features are illustrated in Examples 1–3 in
Sect. 2. We also extend the results in [16] in a different direction, to “closed” systems, i.e.,
systems in which the total particle number is conserved and system-bath interactions are
limited to energy exchange (Sect. 4).

Our second aim is to understand why memory and finite-size effects are so mild in the
models tested, or, put differently, why a scheme that ignores these effects can perform so
well in profile predictions. Here we find the key to lie in cell geometry, referring roughly to
the geometric relation of cell walls and passageways to the rotating disk. To examine these
issues in greater depth, we consider a broader class of cell designs. Among the geometries
studied here, the one that represents the greatest departure from the ideas in [16] (see above)
is used in Examples 5 and 6(A) in Sect. 3.3 (respectively Figs. 9(a) and 10(a)). In these
examples, walls between cells are broken down altogether leaving a domain with rotating
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Fig. 1 Illustration of 1D chain and baths

disks inside. To summarize, we find that finite-size and memory effects can be significant or
insignificant. By understanding the dynamical mechanisms behind them, we learn to identify
“good” and “bad” geometries. With regard to directional bias in particle trajectories due to
memory, an issue also addressed in [17], in Sect. 3.1 we offer a correction scheme that is
proven to be effective for systems with “bad geometry.”

Stochastic Idealizations Alongside the Hamiltonian models, the authors of [16] introduced
a class of Markov jump processes intended to be their stochastic idealizations. Our general-
izations in Sects. 2 and 4 apply also to these stochastic models. We have run many tests, and
have found—without exception—that the simulations converge easily to predicted values
(with, not surprisingly, smaller errors and faster convergence rates than for their Hamiltonian
counterparts). While this class of stochastic models, sometimes called “random-halves mod-
els” (see [32]), are interesting in their own right, we have elected to focus on Hamiltonian
models in this paper because they are both more complex and more physical.

Related Works For reviews of some general physical and mathematical issues involved
in the study of nonequilibrium steady states and transport processes, see, e.g., [5, 11, 20,
29, 40, 41, 44]. Much more is known in the context of stochastic models or models with a
significant stochastic component. Of the considerable literature on that topic, we cite here
a few that are most closely related to the present study: [2–4, 6, 12, 13, 25, 26, 28, 30, 32,
34, 36, 43]. The literature on models with purely deterministic internal dynamics is more
sparse. In addition to the articles already cited, [1, 7, 9, 10, 14, 15, 22, 23, 31, 37, 38, 42]
are the main ones we know of. Finally, aside from putting [16] in the more general contexts
to which it belongs, we have taken some small steps in this paper to connect geometry and
local dynamics to nonequilibrium properties, a connection that, in general, remains to be
understood.

1 Review of Models and Results in [16]

Since the present paper is an extension of [16] with a focus on Hamiltonian models, we begin
with a brief review of the models and relevant findings in the Hamiltonian part of [16].

1.1 Description of Models

Single Cell in Isolation Let �0 ⊂ R
2 be a bounded, simply connected planar region with

piecewise-C3 boundary. A disk D0 is placed in the interior of �0; its center is fixed, and it is
allowed to rotate freely about its center. The state of the disk is given by (θ,ω), where θ is the
angle (relative to a marked reference point) and ω its angular velocity. A number of particles
move about in the cell. The state of a particle is given by (x, v), where x ∈ � := �0 \ D0
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is its position and v ∈ R
2 its velocity. Particles fly freely with constant velocity until they

hit either ∂�0 or ∂D0 (they do not interact with each other directly). A particle that collides
with ∂�0 reflects elastically:

v‖(t+0 ) = v‖(t−0 ), v⊥(t+0 ) = −v⊥(t−0 ),

where t0 is the collision time, v‖ is the component of the particle’s velocity tangential to ∂�0,
and v⊥ is the normal component. When a particle hits ∂D0, the particle swaps its tangential
velocity with the disk’s angular velocity:

ω(t+0 ) = v‖(t−0 ), v‖(t+0 ) = ω(t−0 ),

v⊥(t+0 ) = −v⊥(t−0 ).

We assume that the masses of the particles and the moment of inertia of the rotating disk are
scaled so that the kinetic energy of each particle is |v|2 and the rotational energy of the disk
is ω2. Energy is conserved in the interaction rule above.

Single Cell Coupled to Two Heat Baths Suppose now the cell has two openings, which
we identify with subsets γL, γR ⊂ ∂�0. It is useful (though not necessary) to think of �0 as
having a left-right symmetry, and γL and γR as symmetrically placed on the left and right
sides of � respectively. These two openings are connected to two heat baths that absorb and
emit particles. A particle absorbed by one of the baths leaves the system forever. Each bath is
characterized by two parameters, a temperature T and an injection rate ρ. A Poisson clock
of rate ρ is associated with each bath. When its clock rings, the bath places a new particle
into the system at a (uniformly) random position x ∈ γ , where γ = γL for the left bath and
γ = γR for the right bath. The particle is assigned a random (I.I.D.) velocity v sampled from
the distribution

ce−β|v|2 |v|| sinϕ|dv, c = 2β3/2

√
π

, (1)

where β = 1/T and ϕ ∈ [0,π ] is the angle between v and γ , measured so that ϕ = π
2 points

into �. The actions of the two baths are independent.

1D-chain Coupled to Two Heat Baths Consider N copies of the cell described above—call
them C1,C2, . . . ,CN —each with two openings γL and γR symmetrically placed. We think
of these cells as occupying integer sites 1,2, . . . ,N , and for each i identify the right opening
γR(Ci) of the ith cell with the left opening γL(Ci+1) of the (i + 1)st cell, so that particles
are able to pass from cell to cell along the chain. Sites 0 and N + 1 are occupied by heat
baths which inject particles into (and absorb particles from) cells C1 and CN respectively.
The rules of injection are as above.

Remarks (i) We note that except for the chain-bath interaction, which is stochastic in na-
ture, the dynamics within the chain are purely deterministic and energy-conserving. It is for
this reason that we refer to these models as Hamiltonian chains. The local dynamics are, in
fact, not symplectic at collisions between particles and rotating disks.

(ii) Even though particles do not interact directly with each other, they do interact quite
strongly via the disks, and the overall character of the dynamics is very strongly nonlinear.
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Equilibrium Distributions The following result characterizes the Hamiltonian chain in
thermal equilibrium with two equal heat baths.

Theorem 1 (Eckmann-Young [16]) Consider an N -chain in contact with two baths, both
with temperature T and rate ρ:

1. Single cells. For N = 1, the system preserves a probability measure μT,ρ characterized
by the following properties: The number κ of particles in the cell is a Poisson random
variable with mean

2
√

π · area(�)

|γ | · ρ√
T

,

where |γ | is the length of an opening. The conditional measure of μT,ρ on �k , the state
space for a single cell containing k indistinguishable particles, is given by

ck exp

(
−β

(
ω2 +

k∑
j=1

|vj |2
))

dθdω · dx1 · · ·dxk · dv1 · · ·dvk,

where β = 1/T and ck is the normalizing constant.
2. N -chains. Let μ

T,ρ

i , i = 1,2, . . . ,N , be N copies of μT,ρ . An N -chain in contact with
two equal baths held at (T ,ρ) preserves the product measure

⊗N

i=1 μ
T,ρ

i .

Here are a few different ways to measure temperature for a cell with distribution μT,ρ :

(i) The mean disk energy, E[ω2], is 1
2T .

(ii) The mean energy per particle in the cell, E[|v|2], is T .
(iii) The expected energy of a particle exiting the cell is 3

2 T ; its distribution is given by (1).

Nonequilibrium Steady States Suppose a chain is connected to two unequal heat baths, i.e.,
(TL, ρL) �= (TR, ρR), where TL and TR are the temperatures of the left and right heat baths
respectively, and ρL and ρR are their respective injection rates. It was found numerically
in [16] (though not proved) that irrespective of initial condition, following a transient the
system settles down to a nonequilibrium steady state determined solely by the quadruple
(TL, ρL;TR, ρR). The product nature of the equilibrium distribution in Theorem 1 depends
crucially on having detailed balance within the system (see [16]). In nonequilibrium steady
states, there is no longer detailed balance, and the invariant measure cannot be explicitly
computed. In particular, the system has spatial correlations, and the steady state distribution
is not of product form.

1.2 Scheme for Predicting Nonequilibrium Profiles Proposed in [16]

In this subsection we review the scheme proposed in [16] for deducing approximate mean
disk energies, temperatures, and other profiles in chains that are out of equilibrium. This
scheme is based on the following ideas:

Assumption 1 The system is close to having zero directional bias. When a particle leaves a
cell, let PL denote the probability that it exits to the left and PR the probability that it exits
to the right. By zero bias, we mean PL = PR = 1

2 , regardless of the state of the particle at
the time it entered the cell or the state of the cell while it is there.
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Assumption 2 The system is close to local equilibrium. Given TL, TR, ρL, and ρR (with
(TL, ρL) �= (TR, ρR)) and x ∈ (0,1), let μN,[xN] denote the marginal distribution of the in-
variant measure for an N -chain at site [xN ]. We assume there are numbers T = T (x)

and ρ = ρ(x) independent of N such that for the N -chain in question, μN,[xN] is close
to μT (x),ρ(x) where μT,ρ is as in Sect. 2.1.

The rationale for the first assumption is that when the length of the opening |γ | is small,
a particle will remain inside each cell it visits for a long time, eventually losing memory of
past events. The second assumption is based on the idea of local thermal equilibrium (LTE)
[11, 25], which, if true for these models, will imply the convergence of μN,[xN] to μT (x),ρ(x)

as N → ∞. The idea in [16] is to treat the approximations in Assumptions 1 and 2 as though
they were exact, and to derive under these simplifying assumptions mean energy and particle
density profiles.

Derivation of Profiles Assuming Zero Bias and Local Equilibrium All means below are
taken at steady state. For each cell i, let

Ji = mean number of particles exiting cell i per unit time,

Qi = mean total energy exiting cell i per unit time.

By Ji , we refer here to the total number of particles exiting cell i via either one of its two
exits, and similarly for Qi . Taking the approximation in Assumption 1 to be exact, we get,
from the conservation of mass and energy,

Ji = 1

2
(Ji+1 + Ji−1), Qi = 1

2
(Qi+1 + Qi−1), i = 1,2, . . . ,N,

with boundary conditions

J0 = 2ρL, JN+1 = 2ρR, Q0 = 2ρL · 3

2
TL, QN+1 = 2ρR · 3

2
TR.

It follows that the quantities Ji and Qi linearly interpolate between the boundary conditions.
As N → ∞, J[xN] and Q[xN] converge (trivially) to

J (x) = 2ρL(1 − x) + 2ρRx,

Q(x) = 3ρLTL(1 − x) + 3ρRTRx

for all x ∈ (0,1). Returning to the N -chain, the local equilibrium assumption together with
Theorem 1 then tells us that for cell i, we have Qi = Ji · 3

2 Ti , leading to the

mean temperature profile T (x) = 2

3
· Q(x)

J (x)
= ρLTL(1 − x) + ρRTRx

ρL(1 − x) + ρRx
.

(We think of the ith cell as occupying location xi = i
N+1 and the baths as located at x ∈

{0,1}.) Similarly, we find the

mean disk energy profile D(x) := lim
N→∞

E[ω2
[xN]] = 1

2
T (x),



636 K.K. Lin, L.-S. Young

mean particle density profile κ(x) := lim
N→∞

E[κ[xN]] = 2
√

π · area(�)

|γ | · J (x)

2
√

T (x)
.

Additional profiles, e.g., total kinetic energy in each cell, are also easily deduced.

Remarks Mathematically, that the formulas above give approximate profiles for suffi-
ciently long chains of cells with sufficiently small openings will follow from the continuity
of the observables T ,D and κ in the double limit of zero-bias and infinite volume, the for-
mer to be interpreted as |γ | ↓ 0. Such limits are far from trivial. Rigorous results are out of
reach at the present time.

In [16], simulations were performed for models in which �0 is given by the area enclosed
by four overlapping disks with small openings introduced, and results were reported for 1D-
chains with various parameters. It was found that even for relatively small N , e.g., N = 30,
the predictions above compare surprisingly well against empirical data. This suggests that
for the models tested, (i) memory effects leading to directional bias in particle movements
are indeed negligible, and (ii) local equilibrium is, to a good approximation, achieved at
relatively small N , i.e., finite size effects are insignificant.

2 Generalization to Larger Class of Models

In this section, we generalize the results of [16] in a variety of directions, including:

- Higher dimensions. We focus on 2D models; phenomena in higher dimensions are ex-
pected to be similar.

- Lattice types. In two or more dimensions, there are different lattice types. We focus here
on rectangular and hexagonal geometries.

- Boundary conditions. Dirichlet, periodic, and reflecting boundary conditions are consid-
ered. We show that our scheme applies even to point sources.

- Thermostats. By this we refer to the use of external means to maintain or regulate the
temperature of various parts of the system.

Instead of giving a formal treatment of each of these generalizations, we will present in
Sects. 2.1–2.3 below three examples that systematically illustrate the various effects.

General Setup and Issues The following are features common to all the models to be
presented. We first discuss them so we can focus on the specific points of interest within
each example.

(1) Basic configurations. We start with a lattice of disjoint fixed (non-rotating) disks in R
2.

Figure 2 shows a rectangular array; a hexagonal array is shown in Fig. 5. Particles move in
the space between these disks, bouncing off them in specular collisions. The packing is rela-
tively dense, with narrow channels between adjacent disks to allow the passage of particles.
The area in R

2 between this array of fixed disks is partitioned into identical cells whose walls
are circular arcs (pieces of boundaries of the fixed disks) alternating with openings called
gaps; see Fig. 2. At the center of each cell is a rotating disk, with which particles exchange
energy following the rules in Sect. 1.1. Disk energy will always refer to the kinetic energy
of a rotating disk.

(2) Mixing rates and geometry. We use R and r to denote respectively the radii of the fixed
and rotating disks. These two numbers together with the distance between the centers of
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Fig. 2 Illustration of rectangular
lattice system. Here, the system
consists of a 4 × 3 array of fixed
disks of radius R, defining
among them a total of 6 cells. At
the center of each cell is a
rotating disk (shaded with
centers marked) of radius r . A
cell � is identified

the fixed disks will affect the number of collisions a particle experiences before it finds its
way out of a cell. More collisions will naturally lead to better equilibration within cells. Too
many such collisions, on the other hand, will delay mixing on a more global scale and slow
down convergence to steady state. Information on the expected number of collisions can
be deduced from Theorem 1. For example, on each visit to a cell, the number of collisions
between a particle and the rotating disk is, on average, (2πr)/(total length of all gaps).

(3) Continuum limits. Our domains of interest are bounded. Formally, we fix a region  ⊂
R

2 with piecewise smooth boundary, and consider a sequence of homothetically magnified
images n of . At stage n, the fixed disks in the system are those that meet n. To obtain
continuum limits of profiles for disk energy, particle counts, etc., we map n back to  (so
that the profiles for different n are all defined on ) and take n → ∞.

(4) Predicted vs. simulated results. In each of the examples below, we will report the per-
centage discrepancy between the predicted and simulated values of energy, particle count,
etc. Our predictions are based on exact versions of the two assumptions in Sect. 1.2, which
cannot be true for finite chains with finite gap sizes, and the simulated values given are
computed empirically for finite—and only moderately large—systems.

Remark on Numerical Simulations All numerical results in this paper are computed by
direct Monte Carlo computations, i.e., expectations are estimated by ergodic averages based
on long-time simulations. We prepare the system by sampling the equilibrium distribution
at a uniform temperature Tinit, where Tinit is usually chosen to be the maximum of the bound-
ary temperatures, and evolve the system for 1010 events (an event is a single particle-disk
collision, bath injection, or particle exit). Statistical errors are quantified by a standard batch
means method. Typical relative errors for the simulations in this section are ≤ 2%. For exam-
ple, for the results in Fig. 3 below, the (absolute) standard error for the D profile is estimated
to be ≤ 0.05 and the relative error is ≤ 0.4% at the 95% confidence level.

2.1 Example 1. Rectangular Lattice, Dirichlet Boundary Conditions

Our first example is a 2D rectangular array on a rectangular-shaped domain with Dirichlet
boundary conditions (to be explained). Fixed disks of radius R ∈ (0,1) are placed at even
lattice points {0,2, . . . ,2M} × {0,2, . . . ,2N}. We think of R as being close to 1, so that
each square configuration of 4 fixed disks bounds an open cell with 4 narrow gaps, with
gap size 2(1 − R). In the center of each cell, i.e., at odd lattice points ∈ {1, . . . ,2M −
1} × {1, . . . ,2N − 1}, we place a small rotating disk of radius r . Heat baths are viewed as
occupying the strip of cells just outside the system, injecting and removing particles through
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Fig. 3 Simulation results for the rectangular lattice with Dirichlet boundary conditions. Bath parameters are
as given in the text. The lattice contains 60 × 41 rotating disks, which are viewed as located on a regular
grid within the domain [0,3] × [0,2]. The disk radii are R = 0.95 and r = 0.2. Simulation values are plotted
over interior grid points, and boundary values are added to ease visualization. For all profiles, the discrep-
ancy between computed and predicted profiles are 1–1.2% for (x, y) away from “L”-shaped regions near the
corners

the associated openings. For simplicity, we consider only configurations where all baths
along the same edge have the same parameters (T ,ρ). For example, if the bath along the
left edge has parameters (TL, ρL), then particles with energies distributed according to (1)
with T = TL are injected at rate ρL into each cell in the leftmost column, through its opening
on the left. We refer to the boundary condition described above as a “Dirichlet” boundary
condition.

Profile Prediction The scheme reviewed in Sect. 1.2 is easily generalized to the present
setting. Formulating Assumption 1 in 2D is straightforward: it is equivalent to requiring that
the probability of exiting any of the 4 openings to be ≈ 1

4 . The precise meaning of LTE
here is as follows: let  = [0, a] × [0, b] ⊂ R

2 be the fixed domain on which the continuum
limit will be taken, and set M = [na] and N = [nb] for positive integers n. Then for every
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(x, y) ∈ (0, a) × (0, b), the marginal distribution of the cell at site ([nx], [ny]) tends to μT,ρ

for some T = T (x, y) and ρ = ρ(x, y) as n → ∞.
Returning to the finite system described in the first paragraph, let Jk,� and Qk,� denote

the particle and energy exit rate from the (k, �)th cell. The particle balance equation is the
discrete Laplace equation

Jk,� = 1

4

(
Jk+1,� + Jk−1,� + Jk,�+1 + Jk,�−1

)
,

with boundary conditions J = 4ρL on the left edge, J = 4ρR on the right edge, etc. The
Qk,� are described by the discrete Laplace equation as well, with boundary conditions Q =
4ρL · 3

2TL on the left, Q = 4ρR · 3
2TR on the right, and so on. In the continuum limit, these

equations tend to the Laplace equation with the given boundary values. Solutions for J and
Q are then used to compute the mean disk energy and mean particle count through

D(x,y) = 1

2
T (x, y) = 1

3
· Q(x,y)

J (x, y)
,

κ(x, y) = 2
√

π · 4 − π(R2 + r2)

2(1 − R)
· J (x, y)

4
√

T (x, y)
.

These formulas are virtually identical to those for 1D-chains given in Sect. 1.2, differing
only in some constants, and can be deduced the same way. The differences in constants are
due to the fact that each cell here is in contact with 4 (rather than 2) cells/baths.

Simulation Results We now compare the predicted profiles to the results of direct simula-
tions. Figure 3 shows some simulation results using the following boundary conditions:

(Ttop, ρtop) = (30,1)

(TL, ρL) = (5,8) 60 × 41 cells (TR, ρR) = (50,1)

(Tbottom, ρbottom) = (10,1)

Fixed disks have radius R = 0.95 and rotating disks r = 0.2. These numbers ensure that on
average, each particle experiences ≈ 18 collisions and hits the rotating disk ≈ 3 times on
each pass through a cell.

Figure 3 shows profiles for the jump rate J , the energy exit rate Q, the mean disk energy
D, and the particle count κ . Boundary values have been filled in for ease of visualization.
We have found that the discrepancy between simulation results and predicted profiles are
greatest in the “L-shaped” regions at corners along the boundary of the domain. Away from
these regions, the discrepancy is ≤ 1.5%. That the discrepancy is larger here is clearly due
to discontinuous boundary values and finite-size effects.

Before leaving this example, let us check our intuition against the plotted profiles. Ob-
serve first that panels (a) and (c), i.e., plots of jump rates J and disk energies D, reflect the
boundary conditions in a straightforward way. The saddle-shaped profile of Q (panel (b))
is also easy to explain: it is because along the 4 edges clockwise from left, Q = 4ρ × 3

2T

has ratios 4 : 3 : 5 : 1. A factor that influences particle count is that all else being equal,
particles tend to gather in low-temperature regions. The reason is that in a steady state, the
total particle flux into and out of any region must be equal. At the lower temperature end,
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particles move slowly, hence more of them are needed to produce the same flux. For the
boundary conditions considered here, the accumulation of particles on the left due to colder
temperatures is exaggerated by the higher injection rate on the same side. This has resulted
in the huge spread for κ in panel (d), from > 120 on the left to < 5 on the right. If we change
the boundary conditions to ρL < ρR, the profile for κ would be quite a bit flatter. This is both
predicted and confirmed in simulations.

Non-Dirichlet Boundary Conditions We have obtained similar simulation results for sys-
tems with periodic and reflecting boundary conditions in the vertical direction.

2.2 Example 2. System Cooled by Thermostats

The main novel feature of this example is the use of thermostats in the present context.1

A second feature of note is the use of exit-only boundaries, which for convenience we will
refer to as open boundaries.

Thermostats For our purposes, a thermostat is a disk with the property that whenever
a particle with velocity v hits it, the tangential component v‖ of the particle’s velocity is
instantaneously set to a random value ω sampled from the distribution

ω ∼ ce−β∗ω2
dω, c =

√
β∗
π

,

where T∗ = 1/β∗ is the thermostat temperature. The normal component of v is updated
according to the usual rule: v⊥(t+) = −v⊥(t−). Thus, a particle that hits the thermostated
disk sufficiently many times would acquire the energy distribution for temperature T∗. A cell
is thermostated if it contains a thermostat in place of a rotating disk.

We consider in this example a cooling system on a finite cylindrical domain with an
open boundary at one end. More precisely, the domain is defined by a rectangular array of
fixed disks with a periodic boundary condition in the vertical direction. The right end of the
cylinder is put in contact with heat baths, with which it has the same type of interaction as in
the previous example. The left end of the cylinder has an open boundary, meaning particles
can leave but no new particles enter through it. This configuration leads to a particle flux
across the system, from right to left. As the relatively hot particles move through the system,
they are cooled (either directly or indirectly) by a row of thermostated cells. For simplicity,
we assume the thermostated cells occupy exactly one row which extends the full length of
the cylinder, and all thermostats in these cells are set to a fixed temperature T∗ considerably
lower than that of the heat bath.

Profile Prediction To obtain predictions for the various profiles, we proceed as follows:
First, one solves for J as before, the only difference being that the boundary conditions

for J are periodic in the y direction. The open boundary for x = 0 corresponds to setting
J (0, y) ≡ 0 for all y. Solving the boundary value problem readily yields J .

To find Q, the left and right boundaries are treated in a similar fashion as for J . To handle
thermostats, we assume that the array is mapped to a domain [0, a]× [0, b] with {y = 0} and
{y = b} identified, and that the thermostats are at y = 0. We then set, for each (x, y) with

1See, e.g., [8, 18, 19, 21, 24, 33, 39] for more examples and thorough discussions of thermostats in nonequi-
librium statistical mechanics.
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y ∈ {0, b}, Q(x,y) = 3
2 J (x, y)T∗, where J (x, y) is as in the last paragraph. This is again a

boundary value problem, which can be solved to give Q.
Once J and Q have been computed, profiles for D and κ are given by the same formulas

as in the previous example.

We point out two reasons why one may expect greater discrepancies between predicted
and simulated results in the present model than in the Dirichlet case: (1) In setting the
“boundary values” for Q along the row of thermostated cells, we have assumed that the
outgoing particles have energy 3

2T∗. In reality, a highly-energetic particle that enters a ther-
mostated cell is likely to leave it with somewhat more energy than 3

2T∗: it interacts with the
rotating disk only a finite number of times, keeping the normal component of its velocity
each time. (2) At the open boundary, J must necessarily go to zero, as must therefore parti-
cle count. Since a healthy number of particles is needed in each cell to ensure proper mixing,
the situation near this boundary can be anomalous.

Also, with few particles, a practical concern is inadequate updating during the course of
the simulation.

Simulation Results Figure 4 shows simulation results for the following boundary values:

Again, we use R = 0.95 and r = 0.2. Panel (a) shows the mean disk energy D, which is
higher on the right side due to bath injections and lower along the top and bottom edges due
to the cooling effects of the thermostats. Panel (b) shows the particle counts. In addition to
the cells near the baths, particles accumulate near the top and bottom boundaries due to the
lower temperatures there. Panel (c) compares directly simulation data and predicted values
for some cross-sections of the D profile, and panel (d) examines the situation along y = 0
(where the thermostats are) for x ∈ [2,3], i.e., near the bath. As anticipated, the temperature
here is higher than its predicted values, with the discrepancy rising sharply as x tends to 3.
The particle deficit is then consistent with the fact that exit rates per particle are higher than
predicted.

The effects highlighted in panel (d), however, seem confined to the thermostated cells.
Away from them, the discrepancy between predicted and simulation profiles are about 1–4%
for the mean disk energy and ≤ 7% for the particle count. The latter shows larger discrep-
ancies near the open (left) end of the domain, due presumably to κ ≈ 0 near there.

2.3 Example 3. Hexagonal Array with Point Sources

Our third example is a hexagonal array with point sources and open boundaries. The array
we use consists of fixed disks of radius R placed on the vertices of a triangular mesh; each
edge of the mesh has length 1. Each triangular array of 3 fixed disks bounds a cell. At the
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Fig. 4 Simulation results for cylindrical array with “cooling” boundary conditions. The array contains
60 × 41 rotating disks, mapped to grid points inside [0,3] × [0,2]. Mean disk energy and particle count
profiles are shown in (a) and (b). The discrepancy away from edges is about 1–4% in (a) and ≤ 7% in (b).
In (c), D(x,y) is plotted against y for x = 0.75 (◦), x = 1.5 (�), and x = 2.25 (�). The two panels in (d)
show plots of mean energy per exiting particle Q/J and particle count κ along the row of thermostated cells
at y = 0. Parameters are as described in the text

center of each cell, we place a small rotating disk of radius r . See Fig. 5. The system has
open boundaries with no bath injections. Instead, it is driven by a finite number of point
sources which pump particles directly into the interior of the array. We say a cell contains
a point source with parameters (T∗, ρ∗) if instead of being an ordinary cell containing a
rotating disk, it emits particles having the energy distribution in (1) with T = T∗ at a rate
of ρ∗ irrespective of what enters the cell. These particles are injected into each of the 3
neighboring cells with equal probability, i.e. at a rate of ρ∗/3 each. Notice that by this
definition, point sources are “sinks” as well, in that they also absorb particles.

Profile Prediction Unlike boundary-driven systems, simply letting domain size tend to
infinity does not lead to a meaningful limit. To see this, consider a single point source of
rate ρ in the center of a roughly circular array of cells. In the continuum limit, the jump rate



Nonequilibrium Steady States for Certain Hamiltonian Models 643

Fig. 5 A patch of hexagonal
lattice

J satisfies the Laplace equation with the condition J = 0 on the boundary of the domain
and J = ρ at the location of the point source. The only solution is J ≡ 0 almost everywhere.
Similar considerations show that quantities like mean particle count are also meaningless in
this limit.

Nevertheless, one can still apply the prediction scheme for finite-size systems: we sim-
ply solve the discrete J and Q balance equations without taking continuum limits.2 These
equations take the form

Jc = 1

3

∑
c′∼c

Jc′ and Qc = 1

3

∑
c′∼c

Qc′ ,

where ∼ is the neighbor relation on the hexagonal grid and the equation holds for all cells c

that do not contain a point source. As before, open boundaries are implemented by imagining
a strip of cells c just outside the array and setting Jc = Qc = 0 for these cells. Finally, a cell
c containing a point source is implemented by defining the values of Jc and Qc for that cell
by

Jc = ρ∗ and Qc = 3

2
ρ∗T∗,

where (T∗, ρ∗) are the parameters for the point source in cell c.
With the exception of κ , which depends explicitly on the geometry of cells, all profiles

can be derived from J and Q in exactly the same way as before. The expression for κ here
is easily found to be

κ(x, y) = 2
√

π ·
√

3/4 − π( 1
2R2 + r2)

1 − 2R
· J (x, y)

3
√

T (x, y)
.

Simulation Results Figure 6 shows the results of a simulation. The domain consists of a
hexagonal array with an approximately rectangular boundary, with 60 cells along the bot-
tom edge and 40 along the left. The fixed disks have radii R = 0.485, the rotating disks
r = 0.05, so that each particle hits the rotating disk on average about 10 times before ex-
iting. We place two point sources in the system at the indicated locations. Shown are the
disk energy profile D(x,y) and the mean particle count κ(x, y). The discrepancy between

2Another possibility is to obtain a nontrivial continuum limit by allowing the injection rate ρ to scale with
domain size. We do not consider this possibility further.



644 K.K. Lin, L.-S. Young

Fig. 6 Simulation results for the hexagonal lattice with two point sources. Source A has parameters
(T ,ρ) = (20,6); Source B , (T ,ρ) = (100,70). The domain consists of 60 cells along the top and bottom
edges and 40 cells along the left and right. (Because of the hexagonal geometry, this means 120 × 40 = 4800
cells in total.) The discrepancy away from boundaries are ≤ 1.8% for D and ≤ 3.5% for κ

predicted and simulation profiles are ≤ 1.8% for D(x,y) and ≤ 3.5% for κ(x, y) away from
boundaries.

These results are as expected: the disk energy and particle count profiles clearly reflect
parameters of the point sources. One also sees clearly that the number of particles tends
to zero as one approaches the boundary of the domain, as it should for open boundaries.
The sparsity of particles explains the relative noisiness near the boundaries of Fig. 6(a)
(as discussed in relation to the left edge in Example 2).

Concluding Remarks for Sect. 2

We have extended the recipe for profile prediction proposed in [16] to a variety of situations
and tested it in many concrete examples. In each of the three examples presented (and the
many others not shown), we have found that (i) the predicted profiles are very simple to
compute, and (ii) the discrepancies between predicted and simulated values are no more than
a few percentage points. Given that our parameter choices take the systems tested very far
out of equilibrium and the system sizes considered are only moderate, we find the agreement
between predicted and simulated results strong. We conclude that the scheme proposed is
effective for the class of models studied.

3 Memory, Finite-Size Effects, and Geometry

The success of the prediction scheme proposed in [16] and extended in Sect. 2 of the present
paper prompts the following question: Why is it that memory and finite-size effects have so
little impact on macroscopic profiles in the models considered? The purpose of this section
is to investigate, in the simpler setting of 1D chains, which dynamical mechanisms and/or
aspects of cell geometry are responsible for this outcome, and what happens if the geometry
is varied.

We focus on the following two issues:

(i) Directional bias due to memory of particle history, i.e., depending on its past history
and the state of the cell, a particle may have a preferred direction for exiting; and

(ii) Incomplete equilibration within cells, which may (or may not) happen when particles
collide too few times with the rotating disk before exiting.
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3.1 Directional Bias Due to Particle History

The first part of this subsection has some overlap with [17], which contains a phenomenolog-
ical study of the same bias questions. Our findings are consistent with those in that earlier
study, though we take a slightly different approach, and the bias-correction equations we
derive (which are simpler than those in [17]) will be tested in models with significant bias.

The 1D-chain used here is exactly one row of the 2D-rectangular configuration used in
the previous section, with the top and bottom gaps of each cell sealed, i.e., particles reflect
off these two straight segments elastically. In Parts (A) and (B) below, we consider systems
with fixed disk radius R = 0.95 (leading to gap size = 0.1) and rotating disk radius r = 0.2,
the same parameters as those used in Examples 1 and 2 of the previous section. These
parameters will be varied, with consequences, in Part (C).

The analysis below applies only to situations when there is a sufficient number of parti-
cles in the cell. We assume a mean occupation number of at least about 5.

(A) Single Cell

We begin by measuring the amount of bias in a single cell using numerical simulations.
Consider a 2 × 2 array of fixed disks defining a single cell as shown. Heat baths with the
following parameters are attached to the left and right openings:

TL = 1 − 1
2 �T in

ρL = 1 − 1
2�ρ in

TR = 1 + 1
2 �T in

ρR = 1 + 1
2�ρ in

Let ρ− and ρ+ denote the rates at which particles exit the cell to the left and to the right
respectively. Similarly, we denote mean energy outflux rates by Q±, and define the mean
“temperatures” of outgoing particles by T ± = 2

3Q±/ρ±. We express the observed bias by

�T out = T + − T −, �ρout = ρ+ − ρ−.

Note that zero directional bias would imply �ρout = 0.
We then express �T out and �ρout in terms of �T in and �ρ in, stipulating that TL, TR, and

also ρL, ρR , be symmetric about 1. Expanding to leading order, we obtain

�T out ≈ αT �T in + βT �ρ in,

�ρout ≈ αρ�T in + βρ�ρ in,
(2)

where the coefficients are computed (using −0.2 ≤ �T in,�ρ in ≤ 0.2) to be3

αT ≈ 0.130 ± 0.001, βT ≈ 0.014 ± 0.008,

αρ ≈ 0.021 ± 0.007, βρ ≈ 0.125 ± 0.001.

3The error estimates given here are 2× standard error (corresponding to 95% confidence intervals). This
degree of uncertainty has almost no perceptible effect on the bias correction results in Sect. 3.1(B).
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Relevant Dynamical Mechanisms In general, we think of the rotating disk, whose energy
fluctuates wildly, as a randomizing force, causing particles to lose memory of their pre-
vious spatial locations and directions. Without a doubt, this mechanism is responsible for
diminishing bias in exit direction.4 There is a situation, however, when this mechanism fails:
Suppose a particle enters from the right and hits the rotating disk at roughly a right angle.
If the rotating disk at that moment happens to have energy considerably lower than that of
the particle, then after the energy exchange (see Sect. 1.1), the normal component of the
velocity of the particle continues to dominate its tangential component, and the particle is
reflected back essentially the way it came.5

Define a reflected particle to be one which, in the course of its journey through the cell,
hits only the rotating disk and the two fixed disks on the side of the opening through which
it enters, i.e. it is “reflected back”. (Such particles need not exit the first time around; they
can turn around and have multiple interactions with the rotating disk.) For �T in ≡ 0 and
�ρ in ∈ [−0.2,0.2], we find that among particles entering from the left (respectively, the
right), a fraction r ≈ 0.123 is reflected. Since higher energy particles are more likely to
reflect, one naturally expects the mean temperature of reflected particles to be higher than
that of other particles. At (T ,ρ) = (1,1), we find this difference to be t ≈ 0.09.

Assuming that particles that are not reflected are thoroughly randomized, one would
expect, in terms of orders of magnitude, that αT , βρ ∼ r and βT ∼ rt . The estimate for βT

is based on the fact that on the side with higher injection rate, a larger fraction of particles is
reflected, and this fraction has higher temperature. Computed values of αT , βρ and βT are
consistent with these very naïve estimates. As for αρ , we can only say that it should be > 0
because higher temperature leads to more reflected particles.

The findings above support our contention that reflected particles are an important source
of bias, but the true story is much more complicated. For example, when a particle inter-
acts with the rotating disk, even as some memory is lost, its post-collision trajectory is not
entirely random. It also retains some memory of its previous energy since the normal com-
ponent of its velocity upon impact is kept. A complete analysis is beyond the scope of this
article.

Linear Response for General (T ,ρ) If bias arises mainly from individual particle
trajectories—and that appears to be the case when there is a sufficient number of parti-
cles in the cell—�ρout and �Tout should scale linearly with the total injection rate ρL + ρR.
This allows us to extend the linear response relation (2) to boundary conditions

(TL, ρL) =
(

T − 1

2
�T in, ρ − 1

2
�ρ in

)
, (TR, ρR) =

(
T + 1

2
�T in, ρ + 1

2
�ρ in

)

for general (T ,ρ). The general linear response relations are

�T out

T
≈ αT · �T in

T
+ βT · �ρ in

ρ
,

(3)
�ρout

ρ
≈ αρ · �T in

T
+ βρ · �ρ in

ρ
,

4Concave cell walls also help in the scattering of particles, but they appear not to be as important as the
randomizing effects of the rotating disk.
5A similar observation is made in [17].
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where the phenomenological coefficients αT , βT , etc., are as in (2). We have numerically
verified that these scaling relations are accurate to within 2% for 2 ≤ ρ ≤ 12 and 10 ≤
T ≤ 60.6

(B) Chains

A natural next step is to try to use the linear response relation (3) to account for the effects
of bias on macroscopic profiles. A priori, knowledge of bias effects in a single cell need not
tell us about how a cell would behave when placed within a chain: single cells are driven by
I.I.D. bath injections whereas cells within a chain receive correlated inputs, and long-range
correlations are known to be substantial in nonequilibrium steady states.

Prediction Scheme with Built-in Bias Correction We derive phenomenological equations
for macroscopic profiles assuming that bias at a given site i is determined solely by the
temperature, particle flux, and their gradients at i, in the same way as in a single cell. Let Q±

i

and J±
i be the mean rates of energy and particle flux out of cell i, i.e., Q+

i is the mean total
energy that passes from cell i to cell i + 1 per unit time, and so on, and let T ±

i = 2
3Q±

i /J±
i .

First, we have the balance equations

ρ+
i + ρ−

i = ρ+
i−1 + ρ−

i+1,

Q+
i + Q−

i = Q+
i−1 + Q−

i+1.
(4)

These are augmented by bias corrections of the same form as (3):

T +
i − T −

i

Ti

= αT · �T in
i

Ti

+ βT · �ρ in
i

ρi

,

ρ+
i − ρ−

i

ρi

= αρ · �T in
i

Ti

+ βρ · �ρ in
i

ρi

,

(5)

where we define

Ti = 1

2
(T +

i−1 + T −
i+1), ρi = 1

2
(ρ+

i−1 + ρ−
i+1)

and

�T in
i = T −

i+1 − T +
i−1, �ρ in

i = ρ−
i+1 − ρ+

i−1.

Our proposal is to first compute the coefficients αT , βT , αρ , βρ from single cell simulations,
and then to solve (4) and (5) numerically to obtain bias-corrected predictions. If αρ = βρ =
αT = βT = 0, these equations are precisely the prediction scheme outlined in Sect. 1.2.

We have carried out simulations to validate this bias correction scheme. For chains with
the cell geometry in Part (A), the effect of bias is generally small but measurable. Even with
these more delicate measurements, our scheme gives quite accurate predictions of �ρout(x)

and �T out(x). These findings will be corroborated by those in simulation studies for which
bias is more significant, which we now discuss.

6As pointed out in [17], in principle these coefficients may depend on particle density (this follows from
dimensional analysis). We have not found evidence for any significant variation within the range of parameters
used here.
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Table 1 Single-cell bias coefficients vs. rotating disk radius. The gap size is |γ | = 0.1. We observe similar
trends for αρ and βρ . Below rmin = 0.05, particles can fly through a cell without being in contact with any
wall or disk (infinite horizon), and at rmax ≈ 0.46, the rotating disk touches the fixed disks

r 0.055 0.1 0.2 0.3 0.4

αT 7×10−4 0.060 0.13 0.23 0.33

βT 1.4×10−3 0.004 0.014 0.023 0.028

Fig. 7 Examples of different cell geometries. Panel (a) shows the geometry used in most examples in this
paper, including Examples 1–3. The geometry in (b) leads to strong directional bias. In (c), we show a
geometry that is likely to lead to incomplete equilibration between particles and the rotating disk

(C) “Good” Geometry, “bad” Geometry

Up until now, we have considered a fixed cell geometry (namely that in Fig. 7(a)), which
by all counts gives rise to very little bias. One would expect bias to increase for geometries
which have a larger fraction of reflected orbits. For example, one may guess that if one
increases the gap size |γ | = 2(1 − R), it will be easier for reflected particles to exit, and the
bias coefficients will go up. We have found this to be true, provided |γ | is somewhat smaller
than 2r .

A more straightforward way to increase the fraction of reflected particles, however, is to
fix gap size and increase r , for larger rotating disks are more effective in blocking incoming
orbits. Table 1 shows the values of αT and βT for various values of r with gap size fixed
at 0.1, equivalently with R = 0.95. The trends are self-evident.

Example 4: A Chain with “Bad” Geometry We consider here cells with R = 0.95 and
r = 0.4; a picture of such a cell is shown in Fig. 7(b). This is a candidate for a “bad”
geometry: it is almost as easy for a particle to bounce back and forth between two adjacent
cells as it is to pass from a side chamber to the top or bottom chamber of the same cell.
Simulations were performed for a chain with N = 60, TL = 5, TR = 50, ρL = 2, and ρR = 12;
the results are displayed in Fig. 8.

Predicted profiles using the scheme without bias correction are shown in dashed lines,
while bias-corrected profiles are shown as solid lines. As can be seen from the plots, devia-
tions of simulation data (circles) from uncorrected profile predictions are nontrivial, unlike
the situations in Examples 1–3, where cell geometries are considerably more favorable. On
the other hand, the fit with profiles from our bias-corrected prediction scheme is excellent.
These profiles are computed from (4) and (5) using coefficients αT , βT , αρ , and βρ from
single cell simulations with r = 0.4.

3.2 Incomplete Equilibration

When every particle spends a very long time in a cell before moving on, one may expect the
particles and the rotating disk in the cell to come close to equilibrating. Thus one may think
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Fig. 8 Profiles for chains with “bad” geometry. Here, the chains have rotating disk radius r = 0.4 (we
keep R = 0.95). Shown are simulation data (circles), predicted profile without bias (dashed lines), and
bias-corrected predictions (solid lines)

that small gaps (or passageways) between cells speed up the convergence to local equilib-
rium. In [16] and [17], these gaps were taken to be very small: on average, a particle hits
the rotating disk more than 12 times on each visit to a cell. In Examples 1–3 in the present
paper, these conditions are relaxed to 3–5 hits per visit. But are small gaps a necessary
condition? Put differently, suppose the gaps are large (as in Fig. 7(c)), so that each particle
moves through every cell quickly, hitting the rotating disk only once or twice (or even less)
on each pass. Would such incomplete equilibration necessarily lead to anomalous behavior?

We now attempt to address this question. The short answer is: A particle’s failure to
completely equilibrate with its cell environment on each pass is, in and of itself, not an
obstruction to normal behavior. However, large gaps can amplify finite-size effects.

For lack of a better term, let us call a cell boundary “porous” if a particle passing through
the cell is not likely to collide with the rotating disk too many times before exiting. For the
type of models discussed earlier, porosity is equivalent to larger gap size. We propose below
a connection between porosity and finite-size effects, and provide numerical confirmation
of our thinking.

Dynamics of Equilibration and Finite-Size Effects: A Heuristic Discussion From the point
of view of a particle, equilibration takes place as follows: It moves about the chain in what is
essentially a random walk, exchanging energy with the rotating disks with which it collides,
hence indirectly with other particles which collide with the same disks. It is an ongoing
process, a very messy one involving large fluctuations. To say that a particle has “equili-
brated” basically means that it has acquired “the right statistics.” From this picture, it is
clear that full equilibration in one cell before proceeding to the next is not at all neces-
sary.

However, a particle has to remain in the system long enough to fully sample the totality
of its surroundings. For a concrete example, suppose we place a thermostat in the middle
of a chain. As noted in Example 2, particles retain their normal components in collisions,
one might naively expect that a particle has to interact with the thermostat many times for
equilibration to occur. (Actually, it can also acquire this information indirectly.) If the chain
is too short and most of the particles exit too quickly, then the thermostat may not be fully
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effective due to insufficient sampling. In the case of boundary injections, if the domain is not
large enough for particles to collide a sufficient number of times before exiting the system,
then the different sets of statistics carried by injected particles (e.g., bath temperature) may
not have enough opportunity to get absorbed and propagated through the chain.

The phenomena described above can be thought of as incomplete equilibration with ther-
mostats or baths. They will lead to finite-size effects. This kind of equilibration does not re-
quire that the particle make many collisions in each cell that it visits, though more collisions
are conducive to better statistics.

Here is how porosity enters. To exaggerate the problem, consider a situation where cell
boundaries are sufficiently porous that on average particles travel ballistically for some (mi-
croscopic) distance without exchanging energy with any disks. In such a system, particles
will need more “room” to make the same number of collisions. The more porous the cell
boundaries, the greater the mean free path. The discussion above continues to apply, but a
longer chain or larger domain is required to ensure complete equilibration with thermostats
or baths.

Alternatively, consider a chain of length N in which the mean free path of particles is �.
If we view particles in this chain as moving on the interval (0,1), the paths traced out will
resemble those of a diffusion whose associated lengthscale increases with � (for fixed N ) and
decreases with N (for fixed �). This suggests the following: (a) Incomplete equilibration in
an N -chain can have a smoothing effect on the profiles of relevant observables on (0,1), as
though they are convolved with some kernel. In particular, profiles that are strongly curved
may lose some of their curvature. (b) Whatever the porosity, this smoothing vanishes as
N → ∞.

The discussion above is entirely heuristic, but we believe it captures the flavor of part of
what is going on. To summarize, our reasoning implies the following: (1) Other things being
equal, the more porous the cell geometry, the larger the deviation from expected behavior
for a fixed system size. (2) In the infinite-volume limit, these effects will vanish, i.e., these
are genuinely finite-size effects.

A number of numerical studies were carried out to support (or refute) the thinking above.
Chains driven by (unequal) boundary injections behave exactly as described: finite-size ef-
fects in the form of decreased curvature are clearly visible but for the most part not too
pronounced for chains of moderate length. The thermostat example discussed above pro-
vides a more dramatic illustration of complete versus incomplete equilibration.

Example 5: Cells Without Borders The basic setup is illustrated in Fig. 9(a): it consists of
a 1D chain connected to two heat baths at the two ends and with a single thermostated cell
in (exactly) the middle. The boundary conditions are TL = 80, TR = 50, and ρL = ρR = 8,
and the thermostat is set to temperature T∗ = 10. Neglecting the possible effects of bias, the
predictions in Sect. 2 give, in the continuum limit, a piecewise linear profile for the disk
energy D(x): it linearly interpolates the 3 values D(0) = 40, D( 1

2 ) = 5, and D(1) = 25;
particle count κ(x) is computed as before, i.e. assuming the system is partitioned into cells
(with invisible separations), with each cell containing exactly one disk. System size will be
varied in this study. We consider the following three cell geometries:

– Geometry A (small gaps): R = 0.95, resulting in gap size |γ | = 0.1, and r = 0.2; see
Fig. 7(a). These are the parameters used in Examples 1–3. The average number of inter-
actions with the rotating disk is ≈ 6 per visit.

– Geometry B (large gaps): R = 0.5, resulting in gap size |γ | = 1, and r = 0.3, as shown
in Fig. 7(c). This configuration has infinite horizon. Number of hits per pass is ≈ 0.9.



Nonequilibrium Steady States for Certain Hamiltonian Models 651

Fig. 9 A 1D chain without cell borders. A thermostat with temperature T∗ = 10 is placed at exactly x = 0.5;
the boundary conditions are TL = 80, TR = 50, ρL = ρR = 8; r = 0.5. Panel (a) illustrates the geometry. In
(b), we plot mean disk energy and particle count profiles for two values of N , showing in each case both
simulation data (curves with open circles) and predictions (solid lines). Note that the value of the disk energy
profile D(x) at x = 1/2 is fixed by the thermostat to 1

2 T∗ = 5. Panel (c) shows the energy distribution for the
10th rotating disk from the left for N = 31; empirical data (open circles) are plotted against the disk energy
density for μT,ρ with ρ = 8 and T ≈ 44.3, the empirical temperature of the disk

– Geometry C (no walls between cells): R = 0 and r = 0.5. A chain with this geometry is
shown in Fig. 9(a). This is as “porous” a geometry as there can be.

For each of these geometries, we computed D(x) and κ(x) for N =31, 61, 121, 201
and 401 (for Geometry C, note that the derivations in Sect. 1.2 are not affected by the fact
that there are no cell walls). In each case, deviation from the predicted profile decreases
monotonically as the length of the chain N increases. Two sets of results for Geometry C
are shown in Fig. 9(b). As one can see, finite-size effects are very nontrivial at N = 31, and
are still clearly visible at N = 401. From the plotted values of D(x) (set to 5 at x = 1

2 on
account of the thermostat), one sees that the effectiveness of the thermostat is seriously com-
promised at N = 31: D(x) being higher than predicted is consistent with κ(x) being lower
than predicted. The plot of κ shows unambiguously the effects of smoothing, confirming
the incomplete-equilibration-with-thermostat picture proposed. By contrast, the plots for
Geometry A (not shown) show no visible finite-size effects beyond N = 61; at N = 31, the
deviations are already smaller than those for Geometry C at N = 401. Simulation results for
Geometry B are between those of A and C; they contain no surprises.

An intriguing question is the distribution of disk energy for this type of chains, for they
are the antithesis of chains with tiny gaps (introduced in [16] with the idea that equilibration
within cells may lead to more rapid convergence to local equilibrium). A specific question
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is whether as N → ∞ single site marginals of steady states will tend to measures of the
form μT,ρ defined in Sect. 1.1. Numerical evidence suggests that they will: We found that
disk energy distributions are of Gibbs form for even fairly short chains, independently of
the completeness of equilibration with baths or thermostats. Figure 9(c) shows the distribu-
tions of disk energy at x ≈ 0.3 for Geometry C with N = 31. The plot is in log-linear scale;
data collected from simulations are plotted against disk energy distribution for μT,ρ with
ρ = 8 and T equal to the empirical temperature at the site in question. Notice the remark-
able agreement, demonstrating how close these marginals are to some μT,ρ long before T

approaches its continuum value.

3.3 Implications for General Model Designs

Building on previous ideas, our results in Sects. 2, 3.1, and 3.2 point to a very rich class of
out-of-equilibrium Hamiltonian models for which we have a simple and effective scheme
for predicting approximate energy and particle density profiles. We recapitulate here some
of the ideas, and discuss further implications.

Retaining the particle-disk interaction introduced in [35] and [27], we have shown that
the ideas first put forward in [16] are applicable to a very flexible collection of models:

First, the results are not limited to 1D; simulations have been carried out in 1D and 2D,
and we have seen no reason why the type of prediction scheme studied in this paper cannot
be applied in three and higher dimensions, provided the models have suitable interactions
between moving particles and pinned-down objects. The type of lattices over which to place
the rotating disks appears not to be an issue either; we have illustrated it for rectangular
and hexagonal lattices. We have tested a number of different ways to maintain the system
out of equilibrium: be it boundary driven (we have tested a variety of boundary conditions),
or driven from the interior, using point sources or rows of thermostats—in all cases our
prediction scheme has produced easy-to-compute profiles that show strong agreement with
simulations.

To understand why memory and finite-size effects are so mild in the models tested in
[16] and in Sect. 2, we have proposed an explanation in terms of geometric designs: In
these models, the cells have mostly concave (scattering) walls, are connected by narrow
passageways, and have rotating disks at good distances away from the walls. We have shown
in Sect. 3.1, as have the authors of [17] earlier, that such designs give rise to very low
degrees of directional bias. We have also explained in Sect. 3.2 that the small passageways,
which facilitate equilibration within cells, also ensure the efficient absorption of bath and
thermostat information, reducing finite-size effects. This explains to some degree the rather
surprising fact that in [16], for example, the prediction scheme gives remarkably good results
in chains with a mere 30 cells.

Going beyond the models discussed in the last paragraph, we have found bias to be small
even as we relax considerably the parameters there, i.e., Assumption 1 in Sect. 1.1 applies
to a quite large collection of models. However, there are equally natural geometries that
give rise a non-negligible amount of bias. For these geometries, we have derived a correc-
tion scheme which is relatively straightforward to implement, and shown it to give accurate
results (see Sect. 3.1). In a different direction, we have produced numerical evidence in sup-
port of our ideas on porosity of cell boundaries and finite-size effects (Sect. 3.2). If these
heuristic ideas could be further developed and validated, the implications would be that the
results in [16] and Sect. 2 of this paper will remain valid for systems with large gap sizes
(perhaps no walls at all)—provided we go to larger system sizes.
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Fig. 10 Hexagonal model without cell borders. Panel (a) illustrates (to scale) the geometry and placement of
rotating disks. In (b), we plot mean disk energies, showing simulation data as a function of x (open circles)
and the predicted profile (solid line); the size of the array is 90 × 3

We finish with two examples: Example 6(A), along with Example 5, represents one of
the greatest departures from the models studied in [16] for which our prediction scheme
remains effective; Example 6(B), a close cousin of Example 6(A), makes a connection to
the models studied in [27].

Example 6 (A) We consider a cylindrical domain (or rectangular domain with periodic
boundaries in the vertical direction). Inside this domain, rotating disks are placed on a hexag-
onal lattice with no cell walls or partitions of any kind separating the disks. The disks have
radii r = 0.025, and the centers of adjacent disks are 1 unit apart. See Fig. 10(a). Heat baths
inject particles into the system from the left and the right. To deduce energy and particle
count profiles, we subdivide the domain into hexagonal cells each enclosing exactly one ro-
tating disk in its center, and proceed as before. Figure 10(b) shows the computed disk energy
profile (open circles) and the predicted profile (without bias correction) for a system con-
sisting of a 90 × 3 hexagonal array, with (TL, ρL) = (5,12) and (TR, ρR) = (50,2). A few
other sets of parameters besides this one were also tested, with results ranging from good to
very good.

(B) The configuration in Fig. 10(a) is reminiscent of the model used in [27], except that
the rotating disks in [27] are placed much closer to each other. In (A), we have deliber-
ately kept them apart to avoid bias, which for this geometry can be large: We have carried
out a simple experiment similar to that in Sect. 3.1(A) involving 3 rotating disks of radius
0.475, separated by 3 narrow channels of width 0.05. When all 3 disks are thermostated
at T = 1, simulations show that a particle entering the triangular region between the disks
through one of the channels is 3–4 times more likely to exit from the same channel than
either one of the other two channels. This suggests that a system such as the one in (A)
but with disks packed this close will exhibit significant bias. Preliminary testing confirms
this thinking. For example, when ρL = ρR, the profile for J , which in the absence of bias
would be constant along the length of the cylinder, was found to be nontrivially curved
(concave).

Remark Finally, we observe that as far as methods and overall ideas are concerned, no
aspect of our studies is tied to the particle-disk interaction used. Thus it is reasonable to
conjecture that they may extend to other suitable short-range interactions.
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4 Systems with Constant Particle Number

Up to this point in the paper, we have studied nonequilibrium steady states in systems where
both particles and energy can flow across the boundary, with bath injection rates ρL and ρR

playing the role of chemical potentials. In this section, we consider systems in which the
total particle count is maintained at a constant number, and only energy is allowed to flow
into and out of the system. The difference between these particle-conserving chains and the
chains we studied earlier is akin to the difference between canonical and grand canonical
ensembles in equilibrium statistical mechanics.

To keep the number of particles fixed in models of the type studied in [16] and in this
paper, one way is to replace particles upon their reaching the boundary of the domain with
new particles whose energies reflect those of the baths. That is to say, each particle that
exits is replaced instantaneously by a new one, and there is no other infusion of particles.
Another possibility is to isolate the system entirely from its surroundings, and to place in
different parts of the domain thermostats set to unequal temperatures. Below, we report on
findings using particle-conserving baths; we have found that simulations using thermostats
yield similar results.

Example 7: 1D-chain with Particles Replaced on Exit

We consider a 1D N -chain as before, with cells i = 1 and i = N being in contact with heat
baths. Particles are replaced immediately upon exit. To be definite, we assume that when
a particle exits the system at location x ∈ γ , where γ is either the left opening of cell 1
or the right opening of cell N , independently of its exit velocity it is replaced by a new
particle which appears in the same position x and has a new velocity v′ sampled from the
bath distribution in (1). Equivalently, one can think of the gaps leading outside the chain as
being sealed off by two “thermostated walls,” and when a particle hits one of these walls,
it is reflected but with a new velocity. With these particle-conserving dynamics, the total
number of particles M remains constant in time. Taking a continuum limit means letting
M,N → ∞ while keeping the density M/N constant.

Profile Prediction We submit that the various profiles can still be predicted following the
basic recipe in Sect. 1.2: one first solves for the mean particle jump rate J (x) and the mean
energy outflux Q(x); the other profiles are then expressed in terms of J and Q as before.

What is different here is that because particles are replaced upon exit, the boundary con-
ditions for J are J0 = J1 and JN = JN+1. These (discrete) homogeneous Neumann boundary
conditions lead, assuming zero bias, to J (x) ≡ J0, i.e., the J profile is constant in space. The
Q profile has the same boundary conditions as before and is linear. This leads to a linear tem-
perature profile. The solutions to the J and Q equations are unique only up to multiplicative
constants: they are scaled to match the total particle number in the chain.

Simulation Results Figure 11(a) shows simulation results for a chain with N = 60 and
M = 2000, and boundary conditions TL = 5 and TR = 50. Shown are simulation data (dots)
and predicted profiles—without any built-in bias correction. As can be seen, the agreement
is very good except for the J profile.

The discrepancy in the J profile is, at first, a little puzzling: it is somewhat larger than
in similar non-particle-conserving chains, and is not improved by doubling the total number
of particles to 4000. At the same time, estimates along the lines discussed in Sect. 3.1 show
that the amount of bias here (�ρout/J ≤ 0.0025) is relatively small. A possible explanation
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Fig. 11 Profiles for particle-conserving systems. The system consists of 60 cells and contains 2000 particles.
Shown are simulation data (circles) and predicted profiles (solid lines). The predictions in (a) are without bias
correction; (b) uses the bias-corrected scheme. Boundary conditions are TL = 5 and TR = 50

is that in the present setting, bias can and does lead to a net gradient in J across the length
of the chain, whereas in non-particle-conserving systems the values of J at the two ends are
fixed by the baths.

Figure 11(b) shows bias-corrected predictions for J using the same numerical values of
the bias coefficients αρ , βρ , etc., as in Sect. 3. Agreement with simulation data is good, and
lends further support to the idea that bias is a “local” phenomenon, governed mainly by the
mean values of thermodynamic quantities and their gradients.

5 Conclusions

The main findings of this paper are:

(i) For a large class of Hamiltonian systems, macroscopic profiles such as those for energy
and particle count can be quite accurately predicted in a simple way. The scheme
introduced in [16] and applied to 1D chains is extended here to more general settings,
including 2D systems on rectangular and hexagonal lattices driven by Dirichlet and
other boundary conditions, even point sources. Strong agreement with simulation data
is also obtained for systems regulated by thermostats, and for systems in which particle
numbers are held constant.

(ii) Memory effects resulting in directional bias of particle trajectories can vary from neg-
ligible to significant depending on cell geometry. Where such bias is weak, as is the
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case for a range of examples, the prediction scheme above (which assumes zero bias)
gives accurate results. For “bad” geometries, a scheme with built-in bias correction is
shown to be effective.

(iii) Porous cell boundaries (or large gaps) cause finite-size effects to become more pro-
nounced due to incomplete equilibration with baths or thermostats but do not otherwise
appear to impact macroscopic profiles or LTE.

A more detailed discussion of (ii) and (iii) is given in Sect. 3.3.
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